© Munich Re

LexisNexis® Risk Classifier - Stratifying Mortality Risk Using Alternative Data Sources

Predictive models and life insurance

Munich Re assessed LexisNexis® Risk Classifier, a predictive modeling tool developed and owned by LexisNexis® Risk Solutions, Inc. that accurately stratifies mortality risk using public records, consumer credit history and motor vehicle history. Insurers considering alternative data-based mortality scores should begin with a retrospective validation study on their own experience data.Munich Re can assist carriers with the retrospective study, advise on changes to mortality assumptions and recommend how to incorporate Risk Classifier to streamline underwriting.

Executive summary

The LexisNexis® Risk Classifier Score is a proprietary scoring algorithm that includes public records, credit information and motor vehicle history to predict the relative mortality risk of individuals. Risk Classifier assigns a score ranging from 200 to 997, where high scores represent better relative mortality and low scores reflect worse mortality.

LexisNexis provided to Munich Re 8 million records sampled from a pool of property and casualty insur-ance shoppers. Munich Re reviewed the sample, validated the results, and confirmed that the scores produced by the model are predictive of mortality for the insurance shoppers. Life insurers interested in Risk Classifier should conduct a retrospective study in order to calibrate Risk Classifier to the carrier’s own underwriting paradigm. This process will help carriers balance the score with expected mortality with respect to their unique target markets, distribution channels, and other underwriting tools.

Methodology

Munich Re assessed the effective-ness of Risk Classifier in stratifying the mortality risk profile of a pool of 8 million insurance shoppers with entry ages 18-90. Each life entered the study between the start of 2006 and the end of 2010. Due to known lag in the reporting of deaths, the study end date was set to December 31, 2013. The study population is comprised of 187,836 deaths out of 42 million exposed life-years. The death information is from multiple sources, including the Social Security Death Master File (SSDMF), state deceased records and other LexisNexis® Risk Solutions proprietary sources.

The expected mortality basis was taken from the 2008 VBT primary ultimate ANB tables split by age and gender with a 1 percent mortality improvement. As we did not have the smoking status of each applicant, we used a 85 percent/15 percent non-smoker/smoker blend of the smoker distinct tables.

Munich Re completed analyses of relative actual to expected deaths (A/E) by age, gender, duration and wealth level to assess how the mortality risk stratification by Risk Classifier is influenced by these factors. In addition, we also received and reviewed several credit and public records attributes for each life.

Overall results

Figure 1 provides a high level overview of the validation that the Risk Classifier stratifies mortality risk. Lives with lower Risk Classifier scores have higher mortality risk, while higher Risk Classifier scores correspond to lower mortality risk.

 

 

 

 

 

 

Age

Risk Classifier effectively segments mortality across all ages bands as seen in Figure 2. All age groups follow the same pattern, where mortality risk decreases as the Risk Classifier Score increases. From the chart, we observe that lives with ages greater than 70 have less relative mortality differentiation between low scores and high scores (flatter curve) compared to the other age groups.

 

 

 

 

 

 

Figure 3 shows the distribution of Risk Classifier scores within each age group. We observe that there is a spread of Risk Classifier scores across all age bands and, except for the age ≤ 30 group, the proportion of higher scores increases as age increases. This means that the average Risk Classifier Score is higher at older ages for this specific dataset.

 

 

Duration

From Figure 4, we can see that the effectiveness of Risk Classifier is consistent for varying durations.

 

 

 

 

Wealth

LexisNexis Risk Solutions provided an estimate of wealth for some individuals through a wealth index field. For the 56 percent of individuals with wealth data, one of six levels of a wealth index is assigned. The wealth index is calculated using the relative value of real property, watercraft, and aircraft assets on file associated with the consumer, currently and historically. No self-reported sources are used, but current property values are estimated based on the recorded sale price of the most recent property deed transfer, the most recent tax assessment value, and the market value on the tax assessor’s record.

Munich Re combined neighboring categories to classify applicants into low, medium and high wealth categories. Figure 5 shows the distribution of Risk Classifier scores within each wealth category. We observe that the propor-tion of high Risk Classifier scores increases as wealth level increases. This means that the average Risk Classifier score is the highest in the high wealth category.

Figure 6 demonstrates that Risk Classifier stratifies mortality risk regardless of wealth category. All wealth categories follow the same pattern, where mortality risk decreases as Risk Classifier scores increase. Note that the difference in trend for applicants with low wealth for scores between 900 and 997 is most likely due to the low number of deaths (<5 deaths) in that group.

 

 

Public record and credit attributes

LexisNexis Risk Solutions provided several public records and credit attributes for each life. We reviewed these attri-butes and observed that customers with superior public records and credit history informa-tion have better relative mortality. The table at right  illustrates the rela-tionship between these attributes and relative mortality.

Total Amount of Past Due Balances represents the cumulative outstanding balances across all accounts reported on a credit file. As Figure 7 illustrates, the 31 percent of lives with a non-zero past due balance have much higher relative mortality compared to those with no past due balances.

Figure 8 demonstrates that Risk Classifier continues to segment mortality across total amount of past due balances.

Summary

Munich Re concludes that LexisNexis® Risk Classifier is an effective predictor of mortality for the U.S. insurance applicant population. Risk Classifier stratifies mortality risk across various attributes. Furthermore, the analysis of wealth demonstrates that Risk Classifier effectively segments mortality across different wealth categories.

Insurers considering alternative data-based mortality scores should begin with a retrospective validation study on their own experience data to assess the impact of applying Risk Classifier to their unique target market, distribution and under-writing process. Munich Re can assist carriers with the retrospective study, advise on changes to mortality assumptions and recommend how to incorporate Risk Classifier in underwriting.

Contact the Author:
June Quah
June Quah
Assistant Vice President, Integrated Analytics

Rechtlicher Hinweis

Die gewünschte Information bezieht sich auf Finanzinstrumente, Wertpapiere oder diesbezügliche Angebote, die nicht in oder in die Vereinigten Staaten, Kanada, Australien oder Japan und von US-Bürgern (gemäß der Definition in der Regulation S des US Securities Act 1933) angeboten werden, noch in und von diesen Ländern bzw. US-Bürgern akzeptiert werden dürfen. Folglich wurden diese Finanzinstrumente oder Wertpapiere sowie diesbezügliche Angebote (i) weder nach dem Amerikanischen Wertpapiergesetz noch nach einem Gesetz eines US-Bundesstaates registriert; (ii) diese Finanzinstrumente oder Wertpapiere dürfen nicht direkt oder indirekt in oder in die Vereinigten Staaten angeboten, verkauft, wiederverkauft, verpfändet oder geliefert werden, es sei denn, es liegt eine Befreiung von den Registrierungsanforderungen des Amerikanischen Wertpapiergesetzes vor; und (iii) solche Finanzinstrumente oder Wertpapiere können dem US-Steuerrecht unterliegen. Keine der hierin enthaltenen Unterlagen begründet ein Verkaufsangebot oder eine Aufforderung eines Angebots zum Kauf von Finanzinstrumenten oder Wertpapieren in den Vereinigten Staaten, Kanada, Australien oder Japan bzw. an US-Bürger oder in eine andere Rechtsordnung, in der ein solches Angebot oder dessen Einholung rechtswidrig ist. Personen, die ein Angebot annehmen möchten, dürfen weder die Post der Vereinigten Staaten, Kanadas, Australiens oder Japans oder irgendein Mittel oder Instrument (wie z.B. Faxübertragung, Telex oder Telefon) des Zwischenstaatlichen- oder Außenhandels, noch irgendwelche Einrichtungen einer inländischen Wertpapierbörse der Vereinigten Staaten, Kanadas, Australiens oder Japans für irgendeinen Zweck benutzen, der direkt oder indirekt mit der Annahme eines Angebots zusammenhängt. Annahmen oder andere sich auf ein Angebot beziehende Unterlagen dürfen nicht postalisch in den Vereinigten Staaten, Kanada, Australien oder Japan frankiert oder abgestempelt werden. Alle Personen, die ein Angebot annehmen möchten, müssen eine Adresse außerhalb der USA, Kanada, Japan und Australien für den Erhalt jeglicher Finanzinstrumente oder Wertpapiere angeben. Darüber hinaus wird von jedem Inhaber der relevanten Finanzinstrumente oder Wertpapieren angenommen, dem Emittenten dargelegt zu haben, dass (i) er kein US-Bürger ist und (ii) dass er diese Finanzinstrumente oder Wertpapiere nicht auf Rechnung eines US-Bürgers erwirbt.

Weder die in diesen Seiten enthaltenen Informationen, noch irgendeine Meinungsäußerung begründen ein Angebot oder eine Aufforderung, Finanzinstrumente oder Wertpapiere in irgendeiner Rechtsordnung zu erwerben. Jegliches Angebot oder jegliche Aufforderung wird nur in Unterlagen gemacht, die dafür rechtzeitig veröffentlicht werden; und jegliches Angebot und jegliche Aufforderung ist beschränkt auf die in diesen Unterlagen bereitgestellten Informationen.

Please scroll and read to the very bottom, before you can confirm.
We use cookies on our websites to improve your experience as an internet user, and to optimise our online services. They comprise cookies that are required for technical purposes, and without which the website functionality could not be guaranteed. We also employ cookies to carry out statistical evaluations of the reach of our websites. These evaluations are anonymised. You can find further information on the cookies we use, and ways to object to the use of cookies for statistical evaluations, in our cookie guidelines.