Cost-Benefit Analysis of Fire Risk Reduction Alternatives

Thomas F. Barry, P.E.

Director Risk & Reliability, HSB Professional Loss Control

 The term "fire risk reduction" is defined as the application of technological and administrative measures to reduce fire or explosion risk to a tolerable level. Reduced fire risk means fewer fire losses, less production downtime, better employee morale, better public relations, and greater profit potential. However it is not obtained without cost.

Risk-Informed, Performance Based Fire Protection Steps

Risk Reduction Evaluation Process

Example Depiction of Existing Annualized Risk Versus Risk Tolerance Criteria

To clearly communicate the risk, values are converted to Aggregate Equivalent Monetary Value. To do this, all the consequence levels must be related to an equivalent monetary value:

- Building Damage Level
- Equipment Damage Level
- Stock Damage Level
- Production Downtime Level
- Life Safety Exposure Level
- 'Other' Exposure Levels

Equivalent Monetary (\$) Value at Risk

Example – Life Safety Exposure Levels

	LIFE SAFETY EXPOSURE LEVELS	LS, EQUIVALENT MONETARY VALUE, EMV			
Injuries	1 First Aid – One Person (primarily smoke related)	* \$1,000			
	2 Moderate Burn Injury – One person (may require hospital treatment)	\$10,000			
	3 Severe Burn Injuries – Hospital Treatment 1-3 people	\$100,000 - \$500,000			
Fatalities	4 Employee/On-Site Contractor – Single Fatality	\$1,000,000			
	5 On-Site – 1-3 Fatalities	\$5,000,000			
	6 Off-Site Fatality	\$20,000,000			
EMV = Equivalent Monetary Value					
* NOTE:	The \$ values in this column are for example purposes only.	LS = Life Safety			

Example — Existing Life Safety Risk Versus Life Safety Risk Tolerance

Example Format For The Initial Listing and Screening of Risk Reduction Alternatives

EVENTS	EVENT FACTORS	LIST OF RISK REDUCTION ALTERNATIVES	FEASIBLE RISK REDUCTION ITEMS
Initiating Fire Events	Likelihood Modification: • Modify abnormal failure situation which provide fuel available for combustion (i.e., equipment failure, human error, external failures) • Reduce oxygen availability • Minimize ignition potential	[IDENTIFICATION]	[SCREENING]
Fire Protection Systems (FPS)	Improvements to Fire Protection Systems: • Detection Systems • Emergency Control Systems • Automatic Suppression Systems • Propagation Limiting Measures (i.e., Fire Barriers) • Manual Loss Control Intervention.		
Consequences, Exposure at the Target	Consequence Modification: • Modify source fire heat release rate • Modify life safety exposure levels • Modify production downtime exposure levels		

Risk Reduction Approaches

Fire Protection System Performance Improvement

Fire protection systems of primary interest in fire risk-based evaluations include:

- Detection Systems
- Emergency Control Systems
- Automatic Suppression Systems
- Propagation Limiting Measures (i.e., Fire Barriers)
- Manual Loss Control Intervention

Example of Primary FPS Success Measures

Primary Performance Measure RE Response Effectiveness OLA On-Line Availability

OPR
Operational
Reliability

FPS
Performance
Success
Probability
(Ps)

 $P_S = P_{RE} \times P_{OLA} \times P_{OPR}$

FPS Performance Success Tree Framework — Highlighting Time-Related Performance Factors

Fire Exposure to Control Room Target

Cost Considerations Associated With Risk Reduction Alternatives

INITIAL COSTS, I _C ANNUAL COSTS, A _C	REMARKS	
Design Costs I _c	Conceptual design and detailed specifications	
Equipment Costs I _c	Individual components or turn-key system costs	
Installation Costs I _c	Consider plant or process shutdown time to install equipment	
Permit / License I _c	In some cases besides a building code permit, an environmental permit may be required	
Pre-Startup Acceptance Testing I _c	Very important consideration to prove reliability prior to operation	
Procedures / Training I _c	Procedures and training functions may have to be conducted prior to equipment/system operation	
Operating Costs A _c	Utilities usage (electrical, air)	
Inspection and Testing A _c	In-house or contracted	
Maintenance A _c	In-house or contracted	
Replacement Costs A _c	Useful life of components, system, extinguishing agent	

Calculation Approach

The benefit/cost ratio (B/C) can be calculated as follows [2]:

$$B/C = \frac{A (P/A, i, n)}{Ic}$$

Where A = ARB - Ac

ARB = Annualized Risk Benefit

Ac = Annualized Cost

Ic = Initial Cost

P/A = Present Worth Factor

i = Interest Rate

n = Time Frame, Years

In some cases there will be more than one alternative strategy where the B/C ratio is greater than 1.0. When this occurs then the next decision making step usually fits into one of the following three approaches:

- Select the alternative strategy with the highest B/C ratio
- If the B/C ratios are close, then conduct additional Engineering Economic analysis
- Evaluate the decision maker's preferences

Decision Maker's Preferences

The risk reduction strategy selection team generally includes members of the team who conducted the risk-based study along with additional management decision makers from Risk Management, Engineering, and Operations.

Let's assume that the following decision making factors are developed by the team:

- Cost Effectiveness (defined by B/C ratios)
- Ease of Installation / Maintenance
- Independent of Manual Fire Extinguishment (i.e., minimal reliance on manual intervention and exposure to fire brigade members)

Recent Applications of Risk-Informed, Performance-Based Fire Protection

- Nuclear Fuels Reprocessing
- Oil Terminals
- Fossil Fuel Power Plant Upgrades
- Specialty Chemical Manufacturers
- LP Gas Bulk Storage Facilities
- Hazardous Waste Processing and Storage
- Product Distribution Warehouses