
Transmission and Distribution Line, Underwriting Considerations

14 September 2023 Romeo OUATTARA/ Hlengiwe Vilakazi

Agenda

01

General Introduction 02

Construction Process

03

Insurance Aspects

04

Claims example

01

Transmission or distribution lines carry electric energy from one point to another in an electric power system

Typically, high-voltage lines are classified as transmission lines, and mid- and low-voltage lines as distribution lines. High voltage transmission lines are usually more robust than middle and low voltage distribution lines

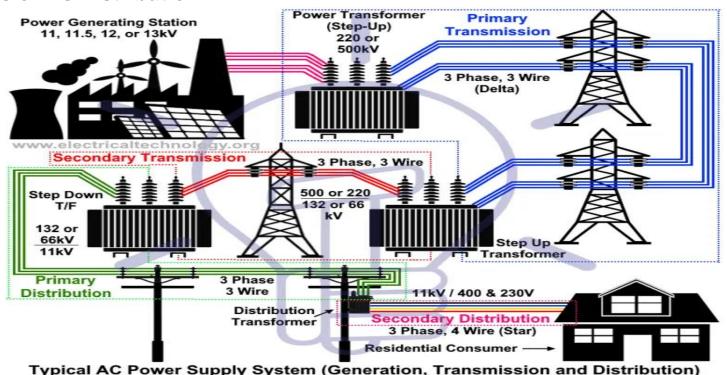
Underground

Source: Underground Cable

Overhead

Source : Overhead transmission

Source: Submarine cable


From generation to distribution

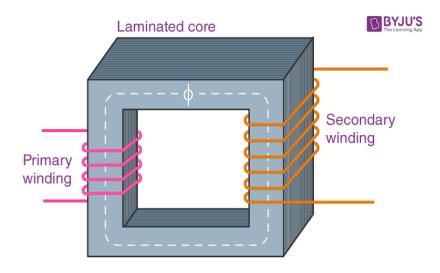
Transmission vs Distribution

Source: www.electricaltechnology.org/2013/05/typical-ac-power-supply-system-scheme.html

Definition

Power station: is an industrial facility that generates electricity from primary energy. Most power plants use one or more generators that convert mechanical energy into electrical energy in order to supply power to the electrical grid for society's electrical needs. The exception is solar power plants, which use photovoltaic cells (instead of a turbine) to generate this electricity.

Source: Primary energy flow


Transformer: A transformer is a device used in the power transmission of electric energy. The transmission current is AC. It is commonly used to increase or decrease the supply voltage

Step-up Transformer: They are used between the power generator and the power grid. The secondary output voltage is higher than the input voltage.

Step-down Transformer: These transformers are used to convert high-voltage primary supply to low-voltage secondary output.

Munich RE

Transformers

Power transformers available in the market have various ratings ranging from 400kV, 200kV, 66kV, and 33kV

Whereas distribution transformers ratings range from 11kV, 6.6kV, 3.3kV, 440v, and 230 volts.

Voltage Transformation Ratio

$$\frac{E_1}{N_1} = \frac{E_2}{N_2} = k$$

K is called the voltage transformation ratio, which is a constant.

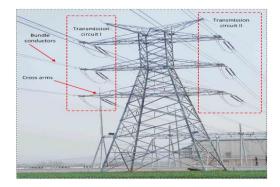
Case 1:If N_2 , N_1 , K>1, it is called a step-up transformer.

Case 2: If $N_2 \le N_1$, K < 1, it is called a step-down transformer.

Munich RE

Substations

A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels.

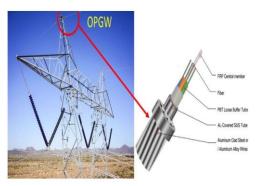


Source: Substation

Components of transmission line

Bundled Conductor

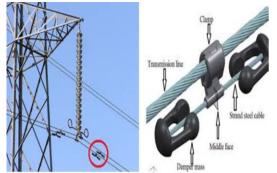

Crossarm Insulator String


Corona Ring

Jumper

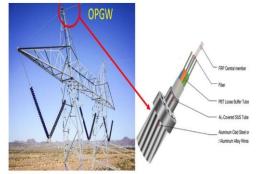
Crossarm, corona Ring, Jumper

Insulators



Optical Fiber Ground Wire

Components of transmission line


Vibration Damper

Spacer

Power Line Marker

Optical Fiber Ground Wire

Components of transmission line

Power Line Marker

Anti-climbing fencer

Source: Components of transmission line

Danger Plate

Africa grid overview

Source : Africa grid from the world bank

Construction Process

Construction Process

Esia

- Environmental compatibility
- Low impact on the nature and living mode
- Consideration of natural or man-made obstacle
- Possible locations of transformer substations

Detailed Planning

- Recording
- Assessing the features of the terrain

Detailed design

- Geotechnical survey
- Topological conditions
- Study of wind
- Transmission line cable length calculation

Construction phases

- Tree-felling work on routes running through forests
- Road Building work
- Site facilities –every 20 Km
- Foundations
- Pylon assembly
- Cables hanging
- Tests and acceptance
- Recultivation

Pylon Assembly

Crane

Source: IMIA WGP 69 (10)

Helicopter

Source: IMIA WGP 69 (10)

Underwriting Information

- Location
- Detailed scope of works ESIA report
- Contractors name
- Geotechnical soil reports
- Breakdown of value
- Schedule
- Route mapping

Route Mapping

Souce : Munich Re

Risk Assessment

- Nat cat exposure
- Ground conditions, type of foundations
- Experience of the contractor
- Environmental and social impact of the project
- Natural or man made obstacles (lakes, mountains, cities, conservation areas, etc..)

Loss Scenarios

Natural Hazards

- Earthquake
- Wind storms
- Flood
- Landslides and avalanches
- Lightning
- Subsidence

External Hazards

- Aircraft Impact
- Bush fire
- Terrorism&SRCC
- Landslides and avalanches
- Lightning
- Subsidence

Project intrinsic hazards

- Fire
- Faulty design and workmanship
- Constructions operations

PML Calculations

Munich RE

Location : Madagascar

Length: 100 Km

SI (Transmision line): 100 millions USD

Scenario: Cyclone event which destroys pylons, 40%

of losses

		Sum Insured(USD)	PML% PML (USI)
Contract works	Material Damages	100,000,000	40% 40,000,00	0
	Escalation %	6%	6,000,00	0
Policy Extensions	Removal of Debris	10,000,000	100% 10,000,00	0
	Expert fees	2,500,000	100% 2,500,00	0
	Expenditing Expenses	2,000,000	100% 2,500,00	0
	Third part Liability	2,500,000	100% 2,500,00	0
	Other	2,500,000	100% 2,500,00	0
	Total	125,500,000	66,000,00	10

Mandatory Clauses

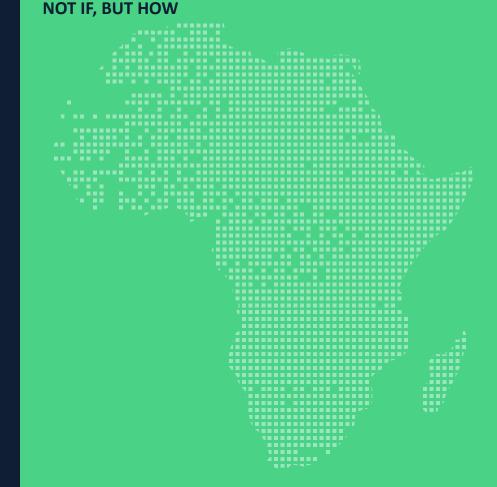
- MR110- Safety measures with respect to precipitation, flood and inundation
- MR112- Fire fighting facilities and fire safety on construction sites
- MR114- Serial Losses
- MR 121- piling Foundation and retaining wall works

Claims examples

Claims examples

Buckled 220 kV pylons following Windstorm Emma about 20 items on the ground

Claims examples



Danger from landslide/mudflow

Erosion of foundation following flooding

Thank you for your attention!

