LIMA Programme Marrying Analytics and Business Decision Making

10 August 2023 Nicholas Song

Munich RE LIMA Programme 2023

01

02

03

Introduction to Pricing

All About the Pricing

All About the Customer

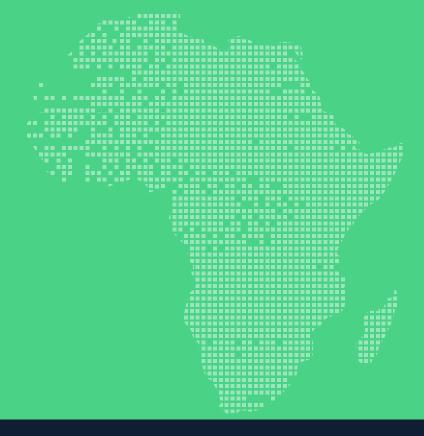
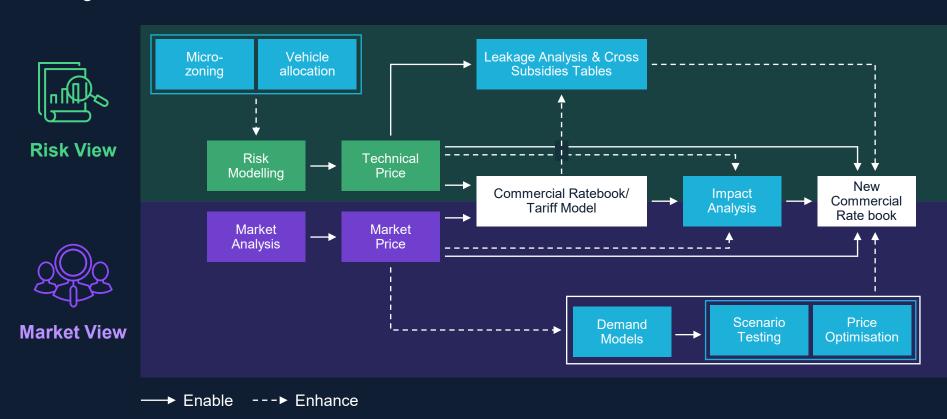


Image: Munich Re

The Pricing Workflow

Munich RE 🗐

Looking at the Risk, the Market or Both...


Market View

The Pricing Workflow

Looking at the Risk, the Market or Both... and Possible Enrichments

Today's Main Messages

The pricing process can be simple, sophisticated or anything in between.

Costs but also business value scale with the effort put into the pricing.

It is about choosing the right set-up for your individual goal and using all the benefits every tool provides.

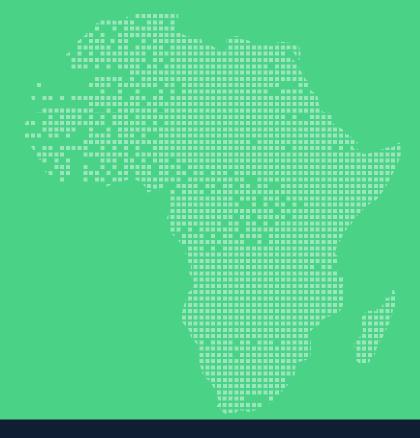


Image: Munich Re

Risk Modelling

Munich RE

Illustrative Granularity of Motor Products

Vehicle Allocation

From a Simple Database to a Consistent Spatial Representation

Country	Make	Model	Model (platform) years	Model body (platform) years	Model type/engine version	Full model name + description
Italy	Alfa Romeo	Mito	Mito 2008– present	Mito hatchback 2008– present	Mito 1.4 16V	Mito 1.4 16V (1368 cm ³ , 70 PS)
Italy	Alfa Romeo		Mito 2008– present	Mito hatchback 2008– present	Mito 1.4 16V	Mito 1.4 16V (1368 cm³, 78 PS)
Italy	Alfa Romeo	Mito	Mito 2008– present	Mito hatchback 2008– present	Mito 1.4 8V	Mito 1.4 8V (1368 cm³, 78 PS)
Italy	Alfa Romeo	Mito	Mito 2008– present	Mito hatchback 2008– present	Mito 1.4 16V	Mito 1.4 16V (1368 cm3, 78 PS)

Vehicle database

- Vehicles list
- Extended list of available features available

Spatial Representation

- Projection in Rⁿ space
- Proven methodology
- Advanced machine learning algorithms

Consistency in projection

- Vehicles with similar features are located on neighbouring regions
- Vision across the various vehicle features

- More precision in risk assessment
- Price new vehicles

Microzoning

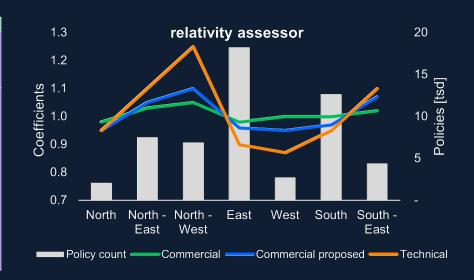
Increasing Level of Geo-Spatial Smoothing

Residuals*
tend to overfit
existing data while
not guaranteeing
stable results.

Medium
Smoothing
gives a trade-off
between local values
and local averages.

Strong Smoothing detects coarse spatial patterns. Constant
does not consider
spatial effects and
constitutes an undercomplex model.

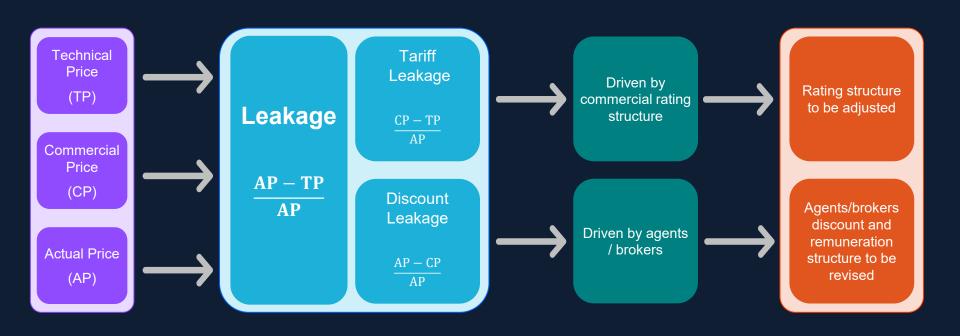
- Improve the risk assessment
- Increase accuracy in steering the book



Technical Price in Action

Munich RE

Defining the New Commercial Rate


			Relativity Assessor			
	Policy	Distribution	Commercial	Commercial	Technical	%
Region	count	%	relativity	relativity	relativity	Difference
						new vs
				new	normalized	current
						(7) =
(1)	(2)	(3)	(4)	(5)	(6)	[(5)-(4)] / (4)
North	2,100	3.8%	0.98	0.95	0.95	-3.0%
North - East	7,515	13.8%	1.03	1.05	1.10	1.9%
North - West	6,928	12.7%	1.05	1.10	1.25	4.8%
East	18,246	33.4%	0.98	0.96	0.90	-2.0%
West	2,750	5.0%	1.00	0.95	0.87	-5.0%
South	12,658	23.2%	1.00	0.97	0.95	-3.2%
South - East	4,399	8.1%	1.02	1.07	1.10	4.9%
Total	54,596	100%	1.00	1.00	1.00	-0.5%

Leakage Analysis in Detail

Application and Benefits of Leakage Analysis

Reporting and Steering the Business Right – Leakage of the Portfolio

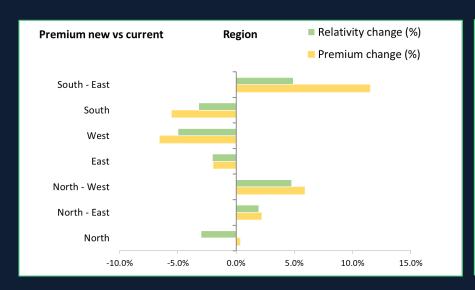
Leakage per region (premium)

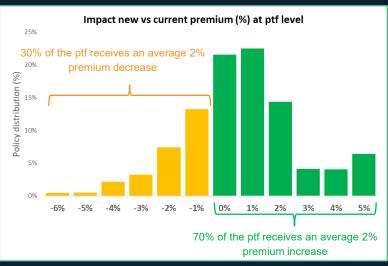
Leakage distribution (premium)

Number of Policies

Total leakage (premium and discount)

Business Type	Profit-making vs. Loss- making Policies	Tariff Leakage	Discount Leakage	Total Leakage
New Business	2,441 - 3,186	22.1%	-26.2%	-4.1%
Renewal				4.8%
Total	38,387 - 32,062	34.8%	-30.9%	4.0%




Identify inefficient segments and also the reasons behind

Impact Analysis

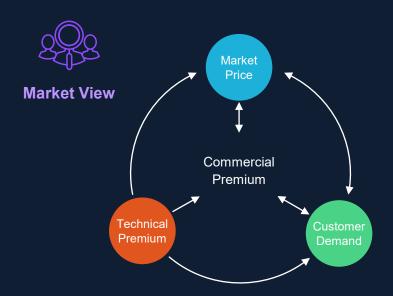
Munich RE

Use the Technical Price to Steer your Portfolio

The tariff change impact should be measured at variable level and at portfolio level at the same time

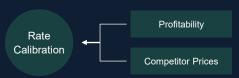
Control the effects of rate adjustments

Market View as an Alternative / Supportive Approach



Risk View

Technical Premium


- Technical premium is based on the risk view of the insurer
- Risk models do not consider competitor prices or customer demand

- Commercial premium is based on the complex combination of technical premium, customer demand and market price
- Market price and customer demand interact with each other

Market Price is a Guide in Making Price Change Decisions

Making price change decisions

Example: Rate calibration by customer age

Age	Street Price	Exposure (%)	Projected Loss Ratio	Predicted Market Price
18 – 25	950	10%	75%	1,025
26 – 35	625	25%	70%	600
36 – 45	500	40%	65%	500
45 – 65	650	20%	60%	600
65+	800	5%	65%	900

• In which segments do street prices differ from market prices?

Are high-LR segments under-charged?

Estimate change in the customer mix

- What is the size of money-left-on-table in low-LR segments?
- In which direction do market prices move?

Market Price (CMA)

Taking Into Account Market Positioning to Improve Pricing Adequacy

Competitive Environment

Company	Rank	Price
Company 1	2	95
Company 2	1	88
Company 3	5	116
Company 4	3	102
Your Company	4	107

Methodology

- Target definition
- Profiles definition
- Data collection
- Reverse engineering via the application of GLM/ML/AI techniques

Impact

- Understand competitors' market positioning at a granular level
- Increased price adjustment capabilities
- Optimised margins
- Increased conversion/ retention rate

Gain market intelligence to complement or replace the technical price

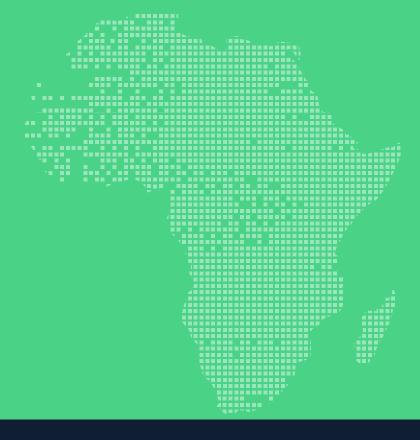


Image: Munich Re

What is Price Optimisation

Adjusting the Final Price Considering Customer Behaviour

Definition of Price Optimisation

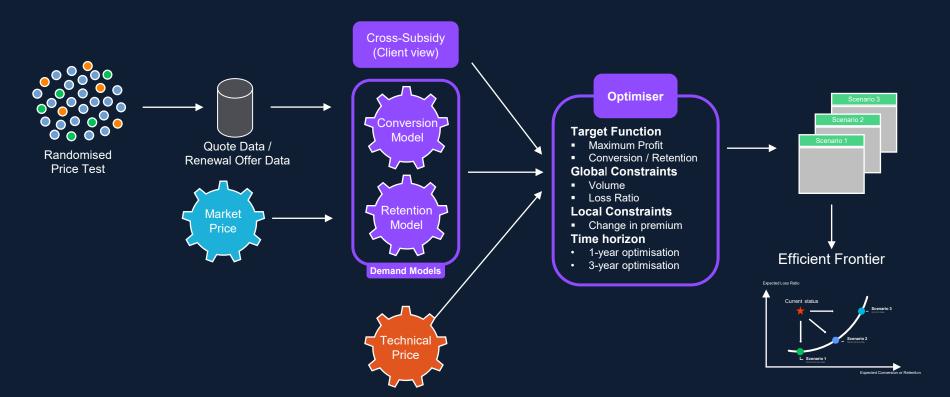
"The supplementation of traditional actuarial loss cost models to include quantitative customer demand models for use in determining customer prices."

Casualty Actuarial Society

"The process of maximizing or minimizing a business metric using sophisticated tools and models to quantify business considerations."

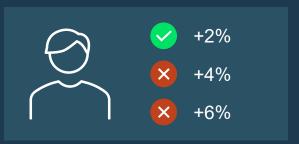
NAIC, Casualty Actuarial and Statistical (C) Task Force

Price optimisation uses data analysis techniques to pursue two main goals:


- Understanding the customer reaction to different pricing strategies for insurance products
- Finding the best pricing strategies considering different goals and constraints

Components of Price Optimisation Process

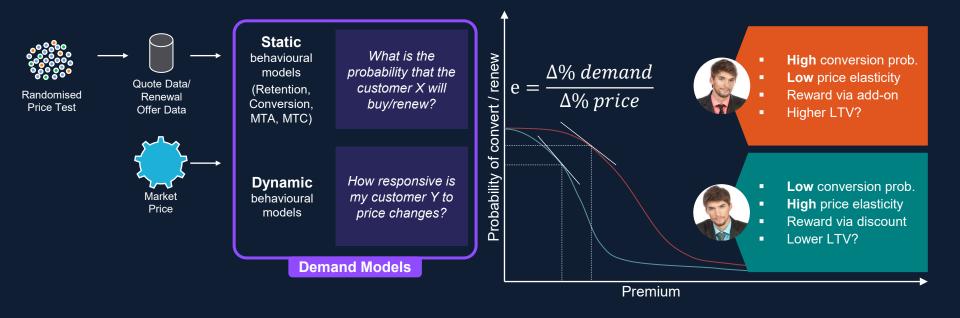

Each Component Brings Value in Achieving Optimal Pricing Positions



How will Customers React

Since all changes on the price will affect customers directly, it is important to understand and predict their behaviour.

Need for behavioural modelling

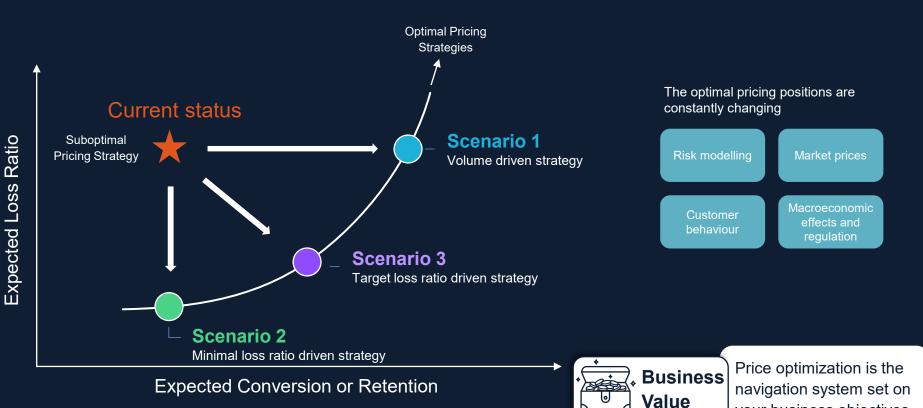


Behavioural Pricing

Behavioural Modelling for Impact Analysis of Pricing Decisions

Modelling purchase probability and price sensitivity at once allows to assess the impact of price changes on production

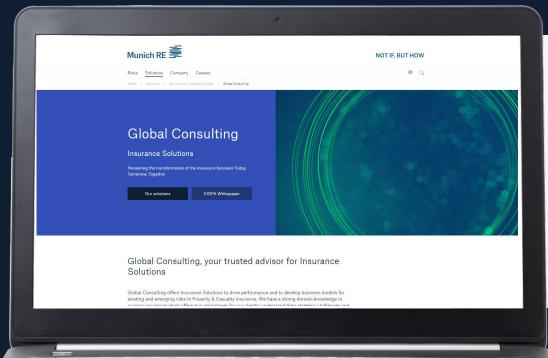
The Time Horizon: Customer Lifetime Value Estimating customer value



Pricing Towards the Goals

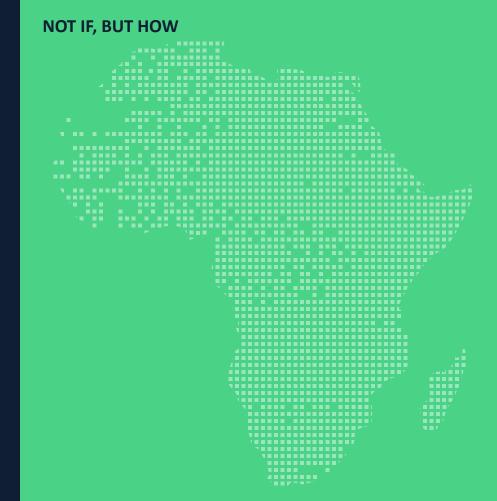
Munich RE

your business objectives


Always Taking an Optimal Pricing Position

Stay Up to Date With Us

Visit our website



Thank you for your attention!

10 August 2023 Nicholas Song

nsong@munichre.com

